[i][c]
Schneider, Philip J. & Eberly, David H.
Geometric Tools for Computer Graphics
Morgan Kaufman Publishers
San Francisco 2003
ISBN: 9781558605947
Cover
#informatica #geometria
ig01#informatica
ig02#informatica

Privacy Policy

  [i][c] INDICE:
Foreword
Figures
Tables
Preface
Chapter 1Introduction
      1.1How to Use This Book
      1.2Issues of Numerical Computations
            1.2.1Low-Level Issues
            1.2.2High-Level Issues
      1.3A Summary of the Chapters
Chapter 2Matrices and Linear Systems
      2.1Introduction
            2.1.1Motivation
            2.1.2Organization
            2.1.3Notational Conventions
      2.2Tuples
            2.2.1Definition
            2.2.2Arithmetic Operations
      2.3Matrices
            2.3.1Notation and Terminology
            2.3.2Transposition
            2.3.3Arithmetic Operations
            2.3.4Matrix Multiplication
      2.4Linear Systems
      2.4.1Linear Equations
      2.4.2Linear Systems in Two Unknowns
      2.4.3General Linear Systems
            2.4.4Row Reductions, Echelon Form, and Rank
      2.5Square Matrices
            2.5.1Diagonal Matrices
            2.5.2Triangular Matrices
            2.5.3The Determinant
            2.5.4Inverse
      2.6Linear Spaces
            2.6.1Fields
            2.6.2Definition and Properties
            2.6.3Subspaces
            2.6.4Linear Combinations and Span
            2.6.5Linear Independence, Dimension, and Basis
      2.7Linear Mappings
            2.7.1Mappings in General
            2.7.2Linear Mappings
            2.7.3Matrix Representation of Linear Mappings
            2.7.4Cramer's Rule
      2.8Eigenvalues and Eigenvectors
      2.9Euclidean Space
            2.9.1Inner Product Spaces
            2.9.2Orthogonality and Orthonormal Sets
      2.10Least Squares
      Recommended Reading
Chapter 3Vector Algebra
      3.1Vector Basics
            3.1.1Vector Equivalence
            3.1.2Vector Addition
            3.1.3Vector Subtraction
            3.1.4Vector Scaling
            3.1.5Properties of Vector Addition and Scalar Multiplication
      3.2Vector Space
            3.2.1Span
            3.2.2Linear Independence
            3.2.3Basis, Subspaces, and Dimension
            3.2.4Orientation
            3.2.5Change of Basis
            3.2.6Linear Transformations
      3.3Affine Spaces
            3.3.1Euclidean Geometry
            3.3.2Volume, the Determinant, and the Scalar Triple Product
            3.3.3Frames
      3.4Affine Transformations
            3.4.1Types of Affine Maps
            3.4.2Compossition of Affine Maps
      3.5Barycentric Coordinates and Simplexes
            3.5.1Barycentric Coordinates and Subspaces
            3.5.2Affine Independence
Chapter 4Matrices, Vector Algebra, and Transformations
      4.1Introduction
      4.2Matrix Representation of Points and Vectors
      4.3Addition, Subtraction, and Multiplication
            4.3.1Vector Addition and Subtraction
            4.3.2Point and Vector Addition and Subtraction
            4.3.3Subtractions of Points
            4.3.4Scalar Multiplication
      4.4Products of Vectors
            4.4.1Dot Product
            4.4.2Cross Product
            4.4.3Tensor Product
            4.4.4The "Perp" Operator and the "Perp" Dot Product
      4.5Matrix Representation of Affine Transformations
      4.6Change-of-Basis/Frame/Coordinate System
      4.7Vector Geometry of Affine Transformations
            4.7.1Notation
            4.7.2Translation
            4.7.3Rotation
            4.7.4Scaling
            4.7.5Reflection
            4.7.6Shearing
      4.8Projections
            4.8.1Orthographic
            4.8.2Oblique
            4.8.3Perspective
      4.9Transforming Normal Vectors
      Recommended Reading
Chapter 5Geometric Primitives in 2D
      5.1Linear Components
            5.1.1Implicit Form
            5.1.2Parametric Form
            5.1.3Converting between Representations
      5.2Triangles
      5.3Rectangles
      5.4Polylines and Polygons
      5.5Quadratic Curves
            5.5.1Circles
            5.5.2Ellipses
      5.6Polynomial Curves
            5.6.1Bézier Curves
            5.6.2B-Spline Curves
            5.6.3NURBS Curves
Chapter 6Distance in 2D
      6.1Point to Linear Component
            6.1.1Point to Line
            6.1.2Point to Ray
            6.1.3Point to Segment
      6.2Point to Polyline
      6.3Point to Polygon
            6.3.1Point to Triangle
            6.3.2Point to Rectangle
            6.3.3Point to Orthogonal Frustum
            6.3.4Point to Convex Polygon
      6.4Point to Quadratic Curve
      6.5Point to Polynomial Curve
      6.6Linear Components
            6.6.1Line to Line
            6.6.2Line to Ray
            6.6.3Line to Segment
            6.6.4Ray to Ray
            6.6.5Ray to Segment
            6.6.6Segment to Segment
      6.7Linear Component to Polyline or Polygon
      6.8Linear Component to Quadratic Curve
      6.9Linear Component to Polynomial Curve
      6.10GJK Algorithm
            6.10.1Set Operations
            6.10.2Overview of the Algorithm
            6.10.3Alternatives to GJK
Chapter 7Intersection in 2D
      7.01Linear Components
      7.02Linear Components and Polylines
      7.3Linear Components and Quadratic Curves
            7.3.1Linear Components and General Quadratic Curves
            7.3.2Linear Components and Circular Components
      7.4Linear Components and Polynomial Curves
            7.4.1Algebraic Method
            7.4.2Polyline Approximation
            7.4.3Hierarchical Bounding
            7.4.4Monotone Decomposition
            7.4.5Rasterization
      7.5Quadratic Curves
            7.5.1General Quadratic Curves
            7.5.2Circular Components
            7.5.3Ellipses
      7.6Polynomial Curves
            7.6.1Algebraic Method
            7.6.2Polyline Approximation
            7.6.3Hierarchical Bounding
            7.6.4Rasterization
      7.7The Method of Separating Axes
            7.7.1Separation by Projection onto a Line
            7.7.2Separation of Stationary Convex Polygons
            7.7.3Separation of Moving Convex Polygons
            7.7.4Intersection Set for Stationary Convex Polygons
            7.7.5Contact Set for Moving Convex Polygons
Chapter 8Miscellaneous 2D Problems
      8.1Circle through Three Points
      8.2Circle Tangent to Thre Lines
      8.3Line Tangent to a Circle at a Given Point
      8.4Line Tangent to a Circle through a Given Point
      8.5Lines Tangent to Two Circles
      8.6Circle through Two Points with a Given Radius
      8.7Circle through a Point and Tangent to a Line with a Given Radius
      8.8Circles Tangent to Two Lines with a Given Radius
      8.9Circles through a Point a Tangent to a Circle with a Given Radius
      8.10Circles Tangent to a Line and a Circle with a Given Radius
      8.11Circles Tangent to Two Circles with a Given Radius
      8.12Line Perpendicular to a Given Line through a Given Point
      8.13Line between and Equidistant to Two Points
      8.14Line Parallel to a Given Line at a Given Distance
      8.15Line Parallel to a Given Line at a Given Vertical (Horizontal) Distance
      8.16Lines Tangent to a Given Circle and Normal to a Given Line
Chapter 9Geometric Primitives in 3D
      9.1Linear Components
      9.2Planar Components
            9.2.1Planes
            9.2.2Coordinate System Relative to a Plane
            9.2.32D Objects in a Plane
      9.3Polymeshes, Polyhedra, and Polytopes
            9.3.1Vertex-Edge-Face Tables
            9.3.2Connected Meshes
            9.3.3Manifold Meshes
            9.3.4Closed Meshes
            9.3.5Consistent Ordering
            9.3.6Platonic Solids
      9.4Quadric Surfaces
            9.4.1Three Nonzero Eigenvalues
            9.4.2Two Nonzero Eigenvalues
            9.4.3One Nonzero Eigenvalue
      9.5Torus
      9.6Polynomial Curves
            9.6.1Bézier Curves
            9.6.2B-Spline Curves
            9.6.3NURBS Curves
      9.7Polynomial Surfaces
            9.7.1Bézier Surfaces
            9.7.2B-Spline Surfaces
            9.7.3NURBS Surfaces
Chapter 10Distance in 3D
      10.1Introduction
      10.2Point to Linear Component
            10.2.1Point to Ray or Line Segment
            10.2.2Point to Polyline
      10.3Point to Planar Component
            10.3.1Point to Plane
            10.3.2Point to Triangle
            10.3.3Point to Rectangle
            10.3.4Point to Polygon
            10.3.5Point to Circle or Disk
      10.4Point to Polyhedron
            10.4.1General Problem
            10.4.2Point to Oriented Bounding Box
            10.4.3Point to Orthogonal Frustum
      10.5Point to Quadric Surface
            10.5.1Point to General Quadric Surface
            10.5.2Point to Elipsoid
      10.6Point to Polynomial Curve
      10.7Point to Polynomial Surface
      10.8Linear Components
            10.8.1Lines and Lines
            10.8.2Segment/Segment, Line/Ray, Line/Segment, Ray/Ray, Ray/Segment
            10.8.3Segment to Segment, Alternative Approach
      10.9Linear Component to Triangle, Rectangle, Tetrahedron, Oriented Box
            10.9.1Linear Component to Triangle
            10.9.2Linear Component to Rectangle
            10.9.3Linear Component to Tetrahedron
            10.9.4Linear Component to riented Bounding Box
      10.10Line to Quadric Surface
      10.11Line to Polynomial Surface
      10.12GJK Algorithm
      10.13Miscellaneous
            10.13.1Distance betwen Line and Planar Curve
            10.13.2Distance between Line and Planar Solid Object
            10.13.3Distance between Planar Curves
            10.13.4Geodesic Distance on Surfaces
Chapter 11Intersection in 3D
      11.01Linear Components and Planar Components
            11.1.1Linear Components and Planes
            11.1.2Linear Components and Triangles
            11.1.3Linear Components and Polygons
            11.1.4Linear Component and Disk
      11.2Linear Components and Polyhedra
      11.3Linear Components and Polyhedra
            11.3.1General Quadric Surfaces
            11.3.2Linear Components and a Sphere
            11.3.3Linear Components and an Ellipsoid
            11.3.4Linear Components and Cylinders
            11.3.5Linear Components and a Cone
      11.4Linear Components and Polynomial Surfaces
            11.4.1Algebraic Surfaces
            11.4.2Free-Form Surfaces
      11.5Planar Components
            11.5.1Two Planes
            11.5.2Three Planes
            11.5.3Triangle and Plane
            11.5.4Triangle and Triangle
      11.6Planar Components and Polyhedra
            11.6.1Trimeshes
            11.6.2General Polyhedra
      11.7Planar Components and Quadratic Surfaces
            11.7.1Plane and General Quadric Surface
            11.7.2Plane and Sphere
            11.7.3Plane and Cylinder
            11.7.4Plane and Cone
            11.7.5Triangle and Cone
      11.8Planar Components and Polynomial Surfaces
            11.8.1Hermite Curves
            11.8.2Geometry Definitions
            11.8.3Computing the Curves
            11.8.4The Algorithm
            11.8.5Implementation Notes
      11.9Quadric Surfaces
            11.9.1General Intersection
            11.9.2Ellipsoids
      11.10Polynomial Surfaces
            11.10.1Subdivision Methods
            11.10.2Lattice Evaluation
            11.10.3Analytic Methods
            11.10.4Marching Methods
      11.11The Method of Separating Axes
            11.11.1Separation of Stationary Convex Polyhedra
            11.11.2Sepaaration of Moving Convex Polyhedra
            11.11.3Intersection Set for Stationary Convex Polyhedra
            11.11.4Contact Set for Moving Convex Polyhedra
      11.12Miscellaneous
            11.12.1Oriented Bounding Box and Orthogonal Frustum
            11.12.2Linear Component and Axis-Aligned Bounding Box
            11.12.3Linear Component and Oriented Bounding Box
            11.12.4Plane and Axis-Aligned Bounding Box
            11.12.5Plane and Oriented Bounding Box
            11.12.6Axis-Aligned Bounding Boxes
            11.12.7Oriented Bounding Boxes
            11.12.8Sphere and Axis-Aligned Bounding Box
            11.12.9Cylinders
            11.12.10Linear Component and Torus
Chapter 12Miscellaneous 3D Problems
      12.1Projection of a Point onto a Plane
      12.2Projection of a Vector onto a Plane
      12.3Angle between a Line and a Plane
      12.4Angle between Two Planes
      12.5Plane Normal to a Line and through a Given Point
      12.6Plane through Three Points
      12.7Angle between Two Lines
Chapter 13Computational Geometry Topics
      13.1Binary Space-Partitioning Trees in 2D
            13.1.1BSP Tree Representation of a Polygon [ di Philip J. Schneider ] 
            13.1.2Minimum Splits versu Balanced Splits
            13.1.3Point in Polygon Using BSP Trees
            13.1.4Partitioning a Line Segment by a BSP Tree
      13.2Binary Space-Partitioning Trees in 3D
            13.2.2Minimum Splits versus Balanced Trees
            13.2.3Point in Polyhedron Using BSP Trees
            13.2.4Partitioning a Line Segment by a BSP Tree
            13.2.5Partitioning a Convex Polygon by a BSP Tree
      13.3Point in Polygon
            13.3.1Point in Triangle
            13.3.2Point in Convex Polygon
            13.3.3Point in General Polygon
            13.3.4Faster Point in General Polygon
            13.3.5A Grid Method
      13.4Point in Polyhedron
            13.4.1Point in Tetrahedron
            13.4.2Point in Convex Polyhedron
            13.4.3Poin tin General Polyhedron
      13.5Boolean Operations on Polygons
            13.5.1The Abstract Operations
            13.5.2The Two Primitive Operations
            13.5.3Boolean Operations Using BSP Trees
            13.5.4Other Algorithms
      13.6Boolean Operations on Polyhedra
            13.6.1Abstract Operations
            13.6.2Boolean Operations Using BSP Trees
      13.7Convex Hulls
            13.7.1Convex Hulls in 2D
            13.7.2Convex Hulls in 3D
            13.7.3Convex Hulls in Higher Dimensions
      13.8Delaunay Triangulation
            13.8.1Incremental Construction in 2D
            13.8.2Incremental Construction in general Dimensions
            13.8.3Construction by Convex Hull
      13.9Polygon Partitioning
            13.9.1Visibility Graph of a Simple Polygon
            13.9.2Triangulation
            13.9.3Triangulation by Horizontal Decomposition
            13.9.4Convex Partitioning
      13.10Circumscribed and Inscribed Balls
            13.1001Circumscribed Ball
            13.1002Inscribed Ball
      13.11Minimum Bounds for Point Sets
            13.1101Minimum-Area Rectangle
            13.1102Minimum-Volume Box
            13.1103Minimum-Area Circle
            13.1104Minimum-Volume Sphere
            13.1105Miscellaneous
      13.12Area and Volume Measurements
            13.1201Area of a 2D Polygon
            13.1202Area of a 3D Polygon
            13.1203Volume of a Polyhedron
Appendix ANumerical Methods
      A.1Solving Linear Systems
            A.1.1Special Case: Solving a Triangular System
            A.1.2Gaussian Elimination
      A.2Systems of Polynomials
Appendx BTrigonometry
Appendix CBasic Formulas for Geometric Primitives
References
Index
About the Authors

 
 [i][c] CRONOLOGIA:
 
 
2000 2000 2050 Schneider, Philip J. ( - ) Schneider, Philip J. ( - ) Schneider, Philip J. Eberly, David H. ( - ) Eberly, David H. ( - ) Eberly, David H. 1903 4621.1006 2003



Generato il giorno: 2021-10-06T01:52:23+02:00 (Unix Time: 1633477943)
Precedente aggiornamento il giorno: 0
Prima registrazione il giorno: 2021.1006
Aggiornato una volta
Dimensione approssimata della pagina: 88488 caratteri (body: 86867)
Versione: 1.0.47

Privacy Policy